
苏教五年级数学下全册名校精编知识点归纳

第一单元 简易方程

1、表示相等关系的式子叫做等式。含有未知数的等式是方程。

例: x+50=150、2x=200

2、方程一定是等式;等式不一定是方程。

3、等式的性质:

- ① 等式两边同时加上或减去同一个数,所得结果仍然是等式。
- ② 等式两边同时乘或除以同一个不等于 0 的数, 所得的结果任然是等式。
- 4、使方程左右两边相等的未知数的值叫做**方程的解**。 求方程中未知数的过程,叫做**解方程**。

5、解方程

60-4X=20,

解 4X=60-20

4X=40

X = 10

检验: 把 X=10 代入原方程, 左边=60-4×10=20, 右边=20,

左边=右边,所以 X=10 是原方程的解。

,方程左边=60-4×10=20=方程右边,所以 X=10 是方程的解。

6、解方程时常用的关系式:

一个加数=和-另一个加数

减数=被减数-差

被减数=减数+差

一个因数=积÷另一个因数

除数=被除数÷商

被除数=商×除数

- 7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的 5 倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
- 8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

9、列方程解应用题的思路:

- A、审题并弄懂题目的已知条件和所求问题,
- B、理清题目的等量关系,
- C、设未知数,一般是把所求的数用 X 表示,
- D、根据等量关系列出方程,
- E、解方程,
- F、检验,

G、作答。

注意:解完方程,要养成检验的好习惯。

第二单元 折线统计图

1、复式折线统计图

从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况, 而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:

- ①写标题和统计时间;
- ②注明图例(实线和虚线表示);
- ③分别描点、标数;
- ④实线和虚线的区分(画线用直尺)。

注意: 先画表示实线的统计图, 再画虚线统计图。不能同时描点画线, 以免混淆。(也可以先画虚线的统计图)

第三单元 因数和倍数

1、几个非零自然数相乘,每个自然数都叫它们积的<mark>因数</mark>,积是这几个自然数的<mark>倍数。因数与倍数是相互依存绝不能孤立的存在.</mark>

- 2、**一个数最小的因数是 1,最大的因数是它本身**,一个数因数的个数是有限的。(**找因数的方法:**成对的找。)
- 3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。(找一个数倍数的方法:从自然数 1、2、3、.....分别乘这个数)
- 4、一个数最大的因数等于这个数最小的倍数。
- 5、按照一个数因数个数的多少可以把非0自然数分成三类
 - ①只有自己本身一个因数的1
- ②只有1和它本身两个因数的数叫作<mark>质数</mark>(素数)。**最小的质数是2。** 在所有的质数中,2是唯一的一个偶数。
- ③除了1和它本身两个因数还有别的因数的数叫作<mark>合数</mark>。(合数至少有 3 个因数) **最小的合数是 4。**

按照是否是 2 的倍数可以把自然数分成两类偶数和奇数。最小的偶数是 0.

- 6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,,)。两个数的公因数也是有限的。公因数只有1的两个数叫作互质数
- 7、两个数公有的倍数,叫做这两个数的**公倍数**,其中最小的一个,叫做这两个数的最小公倍数,用符号[,]表示。两个数的公倍数也是无限的。
- 8、两个素数的积一定是合数。举例: 3×5=15, 15 是合数。
- 9、两个数的最小公倍数一定是它们的最大公因数的倍数。

举例: [6, 8]=24, (6, 8)=2, 24 是 2 的倍数。

- 10、求最大公因数和最小公倍数的方法: (列举法、图示法、短除法)
- ①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例: 15 和 5, [15, 5]=15, (15, 5)=5

②互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例: [3, 7]=21, (3, 7)=1

- ③一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
- 11、质因数:如果一个数的因数是质数,这个因数就是它的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。

- 12、是 2 的倍数的数叫作<mark>偶数</mark>,不是 2 的倍数的数叫作<mark>奇数</mark>。相邻的偶数 (奇数) 相差 2。
- 13、2 的倍数的特征: 个位是 0、2、4、6、8。
 - 5的倍数的特征:个位是0或5。
 - 3 的倍数的特征:各位上数字的和一定是3的倍数。

14、和与积的奇偶性:

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

偶数×偶数=偶数

偶数×奇数=偶数

奇数×奇数=奇数

第四单元 分数的意义和性质

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数 1 来表示,通常我们把它叫做**单位"1"**。

把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做**分数单位**。一个分数的分母是几,它的分数单位就是几分之一。

- 2、分母越大,分数单位越小,最大的分数单位是1/2。
- 3、举例说明一个分数的意义:

3/7 表示把单位"1"平均分成 7 份,表示这样的 3 份;还表示把 3 平均分成 7 份,表示这样的 1 份。

3/7 吨表示把 1 吨平均分成 7 份,表示这样的 3 份;还表示把 3 吨平均分成 7 份,表示这样的 1 份。

4、分数与除法的关系:

被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数= 被除数/除数

如果用 a 表示被除数, b 表示除数, 可以写成 $a \div b = a/b(b \neq 0)$

5、4米的1/5和1米的4/5同样长。

6、求一个数是(占)另一个数的几分之几,用除法列算式计算。

方法: 是(占)前面的数除以后面的数写成分数。

男生人数是女生人数的 3/4,则女生人数是男生人数的 4/3。

7、分子比分母小的分数叫做真分数;

分子比分母大或者分子和分母相等的分数叫做假分数。

- 8、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
- 9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
- 10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常 叫做**带分数**。带分数是假分数的另一种形式。

例如,4/3 就可以看作是 3/3(就是 1)和 1/3 合成的数,写作 1½,读作一又三分之一。

带分数都大于真分数,同时也都大于1。

- 11、把分数化成小数的方法:用分数的分子除以分母。
- 12、**把小数化成分数的方法**:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
- 13、**把假分数转化成整数或带分数的方法**:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

- 14、**把带分数化成假分数的方法**: 把整数乘分母加分子作为假分数的分子,分母不变。
- 15、**把不是 0 的整数化成假分数的方法**:用整数与分母相乘的积作分子, 母为指定的分母。
- 16、大于 3/7 而小于 5/7 的分数有无数个;分数单位是 1/7 的分数只有 4/7 一个。
- 17、分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变, 这是**分数的基本性质**。它和整数除法中的商不变规律类似。
- 18、分子和分母只有公因数 1,这样的分数叫最简分数。约分时,通常要约成最简分数。
- 19、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做**约分**。 **约分方法:**直接除以分子、分母的最大公因数。
- 20、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做**通分**。通分过程中,相同的分母叫做这几个分数的公分母。**通分时,一般用原来几个分母的最小公倍数作公分母。**

21、比较异分母分数大小的方法:

- (1)先通分转化成同分母的分数再比较。
- (2)化成小数后再比较。
- (3)先通分转化成同分子的分数再比较。
- (4)十字相乘法。

第五单元 分数加法和减法

- 1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算; 计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验 算。
- 2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。

分母的最大公因数是 1, 分子都是 1 的分数相减, 得数的分母是两个分母的积, 分子是两个分母的差。

- 3、分母分子相差越大,分数就越接近 0; 分子接近分母的一半,分数就接近 2(1); 分子分母越接近,分数就越接近 1。
- 4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
- 5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。
- 6、裂项公式(用于特殊简便计算,选学)

(1) 对于分母可以写作两个因数乘积的分数,即 $\frac{1}{a \times b}$ 形式的, ψ 这里我们把较小的数写在前面,即 a < b ,那 $a = \frac{1}{a \times b} = \frac{1}{b-a} (\frac{1}{a} - \frac{1}{b})$ (2) 对于分母上为 $a = \frac{1}{a \times b}$ 4 个连续自然数乘积形式的分数,即: ψ $\frac{1}{a \times (n+1) \times (n+2)}$, $\frac{1}{a \times (n+1) \times (n+2) \times (n+3)}$ 形式的,我们有: ψ

$$\frac{1}{n \times (n+1) \times (n+2)} = \frac{1}{2} \left[\frac{1}{n \times (n+1)} - \frac{1}{(n+1)(n+2)} \right] e^{-\frac{1}{n \times (n+1) \times (n+2) \times (n+3)}} = \frac{1}{3} \left[\frac{1}{n \times (n+1) \times (n+2)} - \frac{1}{(n+1) \times (n+2) \times (n+3)} \right] e^{-\frac{1}{n \times (n+1) \times (n+2) \times (n+3)}}$$

第六单元 圆

- 1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
- 2、画圆时,针尖固定的一点是圆心,通常用字母 O 表示;连接圆心和圆上任意一点的线段是半径,通常用字母 r 表示;通过圆心并且两端都在圆上的线段是直径,通常用字母 d 表示。

在同一个圆里, 有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

3、**用圆规画圆的过程:** 先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

- 4、在同一个圆里, 半径是直径的一半, 直径是半径的 2 倍。(d=2r,r=d÷2)
- 5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
- 6、圆心决定圆的位置,半径决定圆的大小。

所以要比较两圆的大小,就是比较两个圆的直径或半径。

扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。

扇形的大小是由圆心角决定的。(半圆与直径的组合也是扇形)

7、正方形里最大的圆:

两者联系: 边长=直径

画法:

- (1)画出正方形的两条对角线;
- (2)以对角线交点为圆心,以边长为直径画圆。
- 8、长方形里最大的圆:

两者联系: 宽=直径

画法:

- (1)画出长方形的两条对角线;
- (2)以对角线交点为圆心,以边长为直径画圆。

- 9、同一个圆内的所有线段中,圆的直径是最长的。
- 10、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×转数

11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π(读 pài)表示。π是一个无限不循环小数。

 π =3.141592653......

我们在计算时,一般保留两位小数,取它的近似值 3.14。π>3.14

- 12、如果用 C 表示圆的周长,那么 $C=\pi d$ 或 $C=2\pi r$
- 13、求圆的半径或直径的方法:

$$d=C\div\pi$$

$$r = C \div \pi \div 2 = C \div 2\pi$$

- 14、半圆的周长等于圆周长的一半加一条直径。
 - C 半圆= πr+2r
 - C 半圆= πd÷2+d

15、常用的 3.14 的倍数:

- $3.14 \times 2 = 6.28$ $3.14 \times 3 = 9.42$
- $3.14 \times 4 = 12.56$ $3.14 \times 5 = 15.7$
- 3.14×6=18.84 3.14×7=21.98
- $3.14 \times 8 = 25.12$ $3.14 \times 9 = 28.26$
- 16、圆的面积公式: $S=\pi r^2$ 。

圆的面积是半径平方的π倍。

17、**圆的面积推导:** 圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即 S 长方形=S 圆);长方形的宽是圆的半径(即 b=r);长方形的长是圆周长的一半(即 $a=c/2=\pi r$)。

即: S 长方形= a × b

S 圆 $= \pi r \times r = \pi r^2$

注意:切拼后的长方形的周长比圆的周长多了两条半径。

C 长方形=2πr+2r=C 圆+d

- 18、半圆的面积和周长。
 - S 半圆=πr²÷2
 - C 半圆=C/2+d

19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数, 面积的倍数=半径的倍数的平方

20、周长相等的平面图形中, 圆的面积最大;

面积相等的平面图形中,圆的周长最短。

21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S 圆环=
$$\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$$

22、常用的平方数:

 $11^2 = 121 \quad 12^2 = 144 \quad 13^2 = 169$

 $14^2 = 196 \quad 15^2 = 225 \quad 16^2 = 256$

172=289 182=324 192=361

 $20^2 = 400$

第七单元 解决问题的策略

1、运用转化的策略可以把不规则的图形转化成规则的图形,转化前后图 形变化了,但大小不变。

- 2、计算小数的除法时,可以把小数转化成整数来计算。
- 3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来 计算。
- 4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算。
- 5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化。