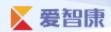


数列-高考必做题

- ① 在等比数列 $\{a_n\}$ 中, $a_1=1$, $a_4=8$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 若 a_3 , a_5 分别为等差数列 $\{b_n\}$ 的第6项和第8项,求 $|b_1| + |b_2| + |b_3| + \cdots + |b_n| (n \in \mathbf{N}^*)$.
- igl(2) 等差数列 $\{a_n\}$ 中, $a_3+a_4=12$, $S_7=49$.
 - (1) 求数列 $\{a_n\}$ 的通项公式.
 - (2) 记[x]表示不超过x的最大整数,如[0.9] = 0,[2.6] = 2,令 b_n = [$\lg a_n$].求数列{ b_n }的前2000 项和.
- igcap 3 在等差数列 $\{a_n\}$ 中, S_n 为其前n和,若 $S_6=51,a_5=13$.
 - (1) 求数列 $\{a_n\}$ 的通项公式 a_n 及前n和 S_n .
 - (2) 若数列 $\{b_n\}$ 中 $b_n=rac{1}{a_na_{n+1}}$, 求数列 $\{b_n\}$ 的前n和 T_n .
 - (3)设函数 $f(n)=egin{cases} a_n,n$ 为奇数 f(n)=f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n),f(n) 的前f(n) 的前f(n) 。
- 4 设等差数列 $\{a_n\}$ 的前n项和为 S_n ,已知 $a_1=9$, a_2 为整数,且 $S_n\leqslant S_5$.
 - (1) 求 $\{a_n\}$ 的通项公式.
 - (2)设数列 $\left\{ rac{1}{a_n a_{n+1}}
 ight\}$ 的前n项和为 T_n ,求证: $T_n \leqslant rac{4}{9}$.
- $extbf{5}$ 已知数列 $\{a_n\}$ 满足 $a_2=2$, S_n 为其前n项和,且 $S_n=rac{a_n\ (n+1)}{2}(n=1,2,3,\cdots)$.
 - (1) 求a₁的值;
 - (2) 求证: $a_n=rac{n}{n-1}a_{n-1}\,(n\geqslant 2)$;
 - (3) 判断数列 $\{a_n\}$ 是否为等差数列,并说明理由.

6



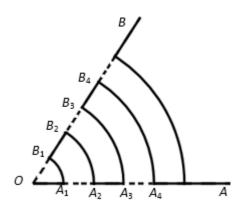
已知数列 $\{a_n\}$ 中, $a_1=2$, $a_2=4$, $a_{n+1}+2a_{n-1}=3a_n\ (n\geqslant 2)$.

- (1) 求证:数列 $\{a_{n+1} a_n\}$ 是等比数列.
- (2) 求数列 $\{a_n\}$ 的通项公式
- (3) 设 $b_n=a_n-1$, $S_n=rac{a_1}{b_1b_2}+rac{a_2}{b_2b_3}+\cdots+rac{a_n}{b_nb_{n+1}}$, $\exists n\in {\bf N}^*$, 使 $S_n\geqslant 4m^2-3m$ 成立,求实数m的取值范围.
- $\overline{igg(q)}$ 数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_1=3$, S_n 和 S_{n+1} 满足等式 $S_{n+1}=rac{n+1}{n}S_n+n+1$.
 - (1) 求 S_2 的值.
 - (2) 求证:数列 $\left\{\frac{S_n}{n}\right\}$ 是等差数列.
 - (3) 若数列 $\{b_n\}$ 满足 $b_n = a_n \cdot 2^{a_n}$,求数列 $\{b_n\}$ 的前n项和.
- iggl. iggl. iggl. iggl. iggl. iggl. iggl. iggl. iggli iggl. iggli iggli
 - (1) 求数列 $\{a_n\}$ 与 $\{b_n\}$ 的通项公式.
 - (2) 记 $c_n = \max\{a_n, b_n\}$,求数列 $\{c_n\}$ 的前n项和 S_n . (注: $\max\{a, b\}$ 表示a与b的最大值.)
- ${ { {0} } }$ 在数列 $\{a_n\}$ 中, $a_1+a_2+a_3+\ldots+a_n=n-a_n\;(\;n=1,2,3...\;)$.
 - (1) 求 a_1, a_2, a_3 的值;
 - (2)设 $b_n = a_n 1$, 求证:数列 $\{b_n\}$ 是等比数列;
 - (3)设 $c_n=b_n\cdot(n-n^2)$ (n=1,2,3...),如果对任意 $n\in N^*$,都有 $c_n<\frac{t}{5}$,求正整数t的最小值 .
- $\boxed{10}$ 设各项均为正数的数列 $\{an\}$ 的前n项和为 S_n ,已知数列 $\{\sqrt{S_n}\}$ 是首项为1,公差为1的等差数列.
 - (1) 求数列 $\{a_n\}$ 的通项公式.
 - (2) 令 $b_n = \frac{1}{\sqrt{a_n S_{2n+1}} + \sqrt{a_{n+1} S_{2n-1}}}$,若不等式 $b_1 + b_2 + b_3 + \ldots + b_n \geqslant \frac{m}{\sqrt{2n+1} + 1}$ 对任意 $n \in \mathbb{N}^*$ 都成立,求实数m的取值范围.
- \mathfrak{g} 数列 $\{a_n\}$ 的前n项和为 S_n ,且满足 $a_1=1$, $2a_{n+1}=2a_n+p$ (p为常数, $n=1,2,3,\cdots$).

- (1) 若 $S_3 = 12$, 求 S_n ;
- (2) 若数列 $\{a_n\}$ 是等比数列,求实数p的值;
- (3) 是否存在实数p,使得数列 $\left\{\frac{1}{a_n}\right\}$ 满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的p的值;若不存在,说明理由:
- $\fbox{12}$ 已知等差数列 $\{a_n\}$ 中, $a_1=5$, $7a_2=4a_4$,数列 $\{b_n\}$ 前n项和为 S_n ,且 $S_n=2(b_n-1)(n\in {
 m N}^*)$.
 - (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2)设数列 $c_n=\left\{egin{aligned} a_n\ ,\ n=2k-1,k\in\mathbf{N}_+\ \dot{\mathbf{x}}\{c_n\}$ 的前n项和 $T_n\ ; \ b_n\ ,\ n=2k,k\in\mathbf{N}_+ \end{aligned}
 ight.$
 - (3) 把数列 $\{a_n\}$ 和 $\{b_n\}$ 的公共项从小到大排成新数列 $\{d_n\}$,试写出 d_1 , d_2 ,并证明 $\{d_n\}$ 为等比数列。
- $\fbox{13}$ 设数列 $\{a_n\}$ 的前n项和为 S_n ,且 $S_n=2^n-1$.数列 $\{b_n\}$ 满足 $b_1=2$, $b_{n+1}-2b_n=8a_n$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2)证明:数列 $\{\frac{b_n}{2^n}\}$ 为等差数列,并求 $\{b_n\}$ 的通项公式
 - (3) 设数列 $\{b_n\}$ 的前n项和为 T_n ,是否存在常数 λ ,使得不等式 $(-1)^n\lambda < 1 + \frac{T_n 6}{T_{n+1} 6}(n \in \mathbb{N}^*)$ 恒成立?若存在,求出 λ 的取值范围;若不存在,请说明理由.
- 已知数列 $\{a_n\}$ 与 $\{b_n\}$ 满足 $b_{n+1}a_n+b_na_{n+1}=(-2)^n+1,b_n=rac{3+(-1)^{n-1}}{2},n\in\mathbf{N}^*$,且 $a_1=2$.
 - (1) 求 a_2, a_3 的值;
 - (2)设 $c_n = a_{2n+1} a_{2n-1}, n \in \mathbb{N}^*$,证明 $\{c_n\}$ 是等比数列;
 - (3) 设 S_n 为 $\{a_n\}$ 的前n项和,证明 $rac{S_1}{a_1}+rac{S_2}{a_2}+\cdots+rac{S_{2n-1}}{a_{2n-1}}+rac{S_{2n}}{a_{2n}}\leqslant n-rac{1}{3}(n\in {f N}^*)$.
- igg(15) 数列 $\{a_n\}$ 满足: $a_{n-1}+a_{n+1}>2a_n(n>1$, $n\in {f N}^*)$,给出下述命题:
 - ①若数列 $\{a_n\}$ 满足: $a_2 > a_1$,则 $a_n > a_{n-1}$ 成立;
 - ②存在常数c, 使得 $a_n > c(n \in \mathbb{N}^*)$ 成立;
 - ③若p+q>m+n(其中p , q , m , $n\in \mathbf{N}^*$),则 $a_p+a_q>a_m+a_n$;
 - ④存在常数d, 使得 $a_n > a_1 + (n-1)d(n \in \mathbb{N}^*)$ 都成立.

上述命题正确的是 ______. (写出所有正确结论的序号)

- 如图所示, $\angle AOB = 1rad$,点 $A_1, A_2 \cdots$ 在OA上,点 $B_1, B_2 \cdots$ 在OB上,其中的每一个实线段和虚线段的长均为1个长度单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为1长度单位 / 秒,则质点M到达 A_3 点处所需要的时间为 ______ 秒,质点M到达 A_n 点处所需要的时间为 ______ 秒.



- 18 数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=rac{n-\lambda}{n+1}a_n$,其中 $\lambda\in R$, $n=12\cdots$.
 - ①当 $\lambda = 0$ 时, $a_{20} =$ ______;
 - ②若存在正整数m,当n>m时总有 $a_n<0$,则 λ 的取值范围是 ______.
- 19 数列 $\{a_n\}$ 中,如果存在 a_k ,使得 " $a_k>a_{k-1}$ 且 $a_k>a_{k+1}$ " 成立(其中 $k\geqslant 2$, $k\in N^*$),则称 a_k 为 $\{a_n\}$ 的一个峰值.
 - (1) 若 $a_n = -3n^2 + 11n$,则 $\{a_n\}$ 的峰值为 ______.
 - (2) 若 $a_n = t \ln n n$, 且 $\{a_n\}$ 不存在峰值,则实数t的取值范围是 ______.
- 某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点 $P_1(x_1,y_1)$ 处,其中 $x_1=1,y_1=1,$ 当 $k\geqslant 2$ 时,

$$\left\{egin{aligned} x_1 = x_{x-1} + 1 - 5[T(rac{k-1}{5}) - T(rac{K-2}{5})] \ y_k = y_{k+1} + T(rac{k-1}{5}) - T(rac{K-2}{5}) \end{aligned}
ight.$$

T(a)表示非负实数a的整数部分,例如T(2,6)=2,T(0,2)=0.

按此方案,第6棵树种植点的坐标应为 _____;第2008棵树种植点的坐标应为 _____.

- 已知数列 $\{a_n\}$ 中, $a_1=\sqrt{2}$, $[a_n]$ 表示 a_n 的整数部分, (a_n) 表示 a_n 的小数部分, $a_{n+1}=[a_n]+rac{1}{(a_n)}(n\in N^*)$ 则 $a_n=$ ______;数列 $\{b_n\}$ 中, $b_1=1,b_2=2,b_{n+1}^2=b_nb_{n+2}(n\in N^*)$,则 $\sum_{i=1}^n a_ib_i=$ ______.
- 在数列 $\{a_n\}$ 中,若 $a_n^2-a_{n-1}^2=p$,($n\geqslant 2, n\in \mathbb{N}^*$,p为常数),则称 $\{a_n\}$ 为 "等方差数列" .下列是对 "等方差数列" 的判断:
 - ① $\{a_n\}$ 是等方差数列,则 $\{a_n^2\}$ 是等差数列;
 - ②{(-1)ⁿ}是等方差数列;
 - ③ $\{a_n\}$ 是等方差数列,则 $\{a_{kn}\}$ ($k \in \mathbb{N}^*$, k为常数)也是等方差数列;
 - ④若 $\{a_n\}$ 既是等方差数列,又是等差数列,则该数列为常数列。

其中正确命题序号为 ______. (将所有正确的命题序号填在横线上)

- A. 123
- B. (1)(2)(4)
- C. 234
- D. 1234

23 已知数量 $\{a_n\}$ 的各项均为正整数,对于 $n=1,2,3,\cdots$,有

$$a_{n+1} = \left\{egin{aligned} &3a_n+5,a_n$$
为奇数 $&rac{a_n}{2^k},a_n$ 为偶数 k 为使 a_{n+1} 为奇数的正整数

当 $a_1=11$ 时, $a_{100}=$ ______;若存在 $m\in {\bf N}^*$,当n>m且 a_n 为奇数时, a_n 恒为常数p,则p的值为

24 已知向量序列: $a_1, a_2, a_3, \cdots, a_n, \cdots$ 满足如下条件:

$$|a_1| = 4|d| = 2$$
, $2a_1 \cdot d = -1 \square a_n - a_{n-1} = d$ ($n = 2, 3, 4, \cdots$).

若 $a_1 \cdot a_k = 0$,则k =______ ; $|a_1|, |a_2|, |a_3|, \cdots, |a_n|, \cdots$ 中第 _____ 项最小 .

已知函数 $f(x) = x^2 \sin x$, 各项均不相等的有限项数列 $\{x_n\}$ 的各项 x_i 满足 $|x_i| \leq 1$. 令

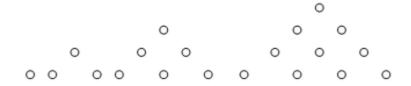
$$F(n) = \sum_{i=1}^n x_i \cdot \sum_{i=1}^n f(x_i)$$
 , $n \geqslant 3$ 且 $n \in \mathbf{N}$,例如: $F(3) = (x_1 + x_2 + x_3) \cdot (f(x_1) + f(x_2) + f(x_3))$.

下列给出的结论中:

- ①存在数列 $\{x_n\}$ 使得F(n)=0;
- ②如果数列 $\{x_n\}$ 是等差数列,则F(n) > 0;
- ③如果数列 $\{x_n\}$ 是等比数列,则F(n) > 0;

正确结论的序号是 _____.

26 南宋数学家杨辉曾经研究过如图所示的三角形数:



- 27 无穷等差数列 $\{a_n\}$ 的各项均为整数,首项为 a_1 ,公差为d, S_n 是其前n项和,3、21、15是其中的三项.给出下列命题:
 - ①对任意满足条件的d,存在 a_1 ,使得99一定是数列 $\{a_n\}$ 中的一项;
 - ②对任意满足条件的d,存在 a_1 ,使得30一定是数列 $\{a_n\}$ 中的一项;
 - ③存在满足条件的数列 $\{a_n\}$,使得对任意的 $n \in \mathbb{N}^*$, $S_{2n} = 4S_n$ 成立.

其中正确命题为 _____ . (写出所有正确命题的序号)

- 已知数列 $\{a_n\}$ 满足 $a_1=rac{1}{k}$, $k\geqslant 2$, $k\in {f N}^*$, $[a_n]$ 表示不超过 a_n 的最大整数(如[1.6]=1),记 $b_n=[a_n]$,数列 $\{b_n\}$ 的前n项和为 T_n .
 - ①若数列 $\{a_n\}$ 是公差为1的等差数列,则 $T_4 =$ _____.
 - ②若数列 $\{a_n\}$ 是公比为k+1的等比数列,则 $T_n=$ ______.

29

已知数列 $\{a_n\}$ 满足 $na_{n+2}-(n+2)a_n=\lambda(n^2+2n)$,其中 $a_1=1$, $a_2=2$,若 $a_n< a_{n+1}$ 对 $\forall n\in {\bf N}^*$ 恒成立,则实数 λ 的取值范围是 ______.

- 到于数列 $\{a_n\}$,若 $\forall m$, $n\in \mathbf{N}^*$ (m
 eq n),都有 $\dfrac{a_m-a_n}{m-n}\geqslant t$ (t为常数)成立,则称数列 $\{a_n\}$ 具有性质P(t).
 - (1) 若数列 $\{a_n\}$ 的通项公式为 $a_n=2^n$,且具有性质P(t),则t的最大值为 ______ .
 - (2) 若数列 $\{a_n\}$ 的通项公式为 $a_n=n^2-rac{a}{n}$,且具有性质P(10),则实数a的取值范围是 _______.