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2017届学科网高三数学跨越一本线

                              问题一：集合中的创新问题
数学思维的创新是思维品质最高层次,以集合为背景的创新问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,以集合为依托,考查考生理解问题、解决创新问题的能力．常见的命题形式有新定义、新法则、新运算等,这类试题中集合只是基本的依托．
一、创新集合新定义
解决以集合为背景的新定义问题,要抓住两点：(1)紧扣新定义．首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在；(2)用好集合的性质．解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质．

【例1】若集合A具有以下性质：

(Ⅰ)0∈A,1∈A；

(Ⅱ)若x∈A,y∈A,则x－y∈A,且x≠0时,eq \f(1,x)∈A.

则称集合A是“好集”．下列命题正确的个数是(　　)

(1)集合B＝{－1,0,1}是“好集”；

(2)有理数集Q是“好集”；

(3)设集合A是“好集”,若x∈A,y∈A,则x＋y∈A.

A．0     B．1     C．2      D．3

【分析】抓住新定义的特点,根据“好集”满足的两个性质,逐个进行验证．
【解析】选C,(1)集合B不是“好集”,假设集合B是“好集”,因为－1∈B,1∈B,所以－1－1＝－2∈B,这与－2∉B矛盾．(2)有理数集Q是“好集”,因为0∈Q,1∈Q,对任意的x∈Q,y∈Q,有x－y∈Q,且x≠0时,eq \f(1,x)∈Q,所以有理数集Q是“好集”．(3)因为集合A是“好集”,所以0∈A,若x∈A,y∈A,则0－y∈A,即－y∈A,所以x－(－y)∈A,即x＋y∈A.

【点评】紧扣新定义,抓住新定义的特点,把新定义叙述的问题的本质搞清楚,并能够应用到具体的解题过程中．
【小试牛刀】【2017浙江温州高三模拟】已知集合
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的“和谐实数对”,则以下集合中,存在“和谐实数对”的是（    ）
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二、创新集合新运算

创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的．
【例2】如图所示的Venn图中,
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【小试牛刀】【2017河北武邑模拟】用
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中的元素个数,定义
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的所有可能值构成的集合为
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A．4    B．3    C．2    D．1
三、创新集合新性质
创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题．

【例3】【2017吉林四校联考】若
[image: image31.wmf]X

是一个集合,
[image: image32.wmf]t

是一个以
[image: image33.wmf]X

的某些子集为元素的集合,且满足：①
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中任意多个元素的并集属于
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中任意多个元素的交集属于
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．则称
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是集合
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扑．已知集合
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其中是集合
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上的一个拓扑的集合
[image: image52.wmf]t

的所有序号是        ．

【分析】根据集合
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具有的3个性质逐个进行判断.
【解析】①
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足集合
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上的一个拓扑的集合
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的三个条件．所以②④正确；③
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【点评】求解本题需要准确理解集合
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上的一个拓扑
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所具有的三个性质条件,需要准确的把握集合包含的判定方法,及集合的子集间的交并补的关系．需要学生认真分析题干,准确把握信息．对于这种开放性题目,需要考生准确理解和快速掌握新知识的能力．[来源:Z&xx&k.Com]
【小试牛刀】【2016湖北襄阳四校期中】已知集合M是由具有如下性质的函数
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在集合M中的个数是

A．1个          B．2个      C．3个      D．4个

【迁移运用】
　
 1.【2017山东潍坊临朐月考】已知集合
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给出下列4个集合：
①
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其中所有“理想集合”的序号是（   ）
A.①③                     B.②③   
C.②④                     D.③④
2.【20[image: image81.png]i 22 2R (ZXXK.COM)




15湖北高考】已知集合A＝{(x,y)|x2＋y2≤1,x,y∈Z},B＝{(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A
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|(x1,y1)∈A,(x2,y2)∈B},则A
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B中元素的个数为(　　)

A．77      B．49       C．45      D．30

3.【2016广东省华南师大附中高三5月测试】非空集合
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为“融洽集”．现给出下列集合和运算：①
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4．【2017年河北武邑中学】若集合
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5．【2017湖南石门一中高三月考】对于任意两个正整数[image: image112.wmf]n
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6.对于复数
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①集合S＝{a＋bi|（[image: image133.wmf]a,b
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上面命题中真命题共有哪些？（  ）

A．①    B．①②   C．①②③    D．①②④[来源:学科网]
8．【2016广东省揭阳模拟】非空数集
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.其中“互倒集”的个数是（   ）

A．4              B．3               C．2            D．1
9.【(2017河南郑州质检)[image: image147.png]i 22 2R (ZXXK.COM)




已知集合A,B,定义集合A与B的一种运算A⊕B,其结果如下表所示：

	A
	{1,2,3,4}
	{－1,1}
	{－4[image: image148.png]i 22 2R (ZXXK.COM)




,8}
	{－1,0,1}

	B
	{2,3,6}
	{－1,1}
	{－4,－2,0,2}
	{－2,－1,0,1}

	A⊕B
	{1,4,6}
	∅
	{－2,0,2,8}
	{－2}


按照上述定义,若M＝{－2 012,0,2 013},N＝{－2 013,0,2 014},则M⊕N＝________．

10．【2017福建连城期中】设
[image: image149.wmf]P

是一个数集,且至少含有两个数,若对任意
[image: image150.wmf]a

、
[image: image151.wmf]bP

Î

,都有
[image: image152.wmf]ab

+

、
[image: image153.wmf]ab

-

、
[image: image154.wmf]ab

、
[image: image155.wmf]a

P

b

Î

（除数
[image: image156.wmf]0

b

¹

）,则称
[image: image157.wmf]P

是一个数域,例如有理数集
[image: image158.wmf]Q

是数域,有下列命题：[来源:学*科*网Z*X*X*K]
①数域必含有0,1两个数；②整数集是数域；③若有理数集
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必为数域；④数域必为无限集．其中正确的命题的序号是                 ．
11．【2017福建泉州段考】若集合
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12．【2017浙江杭州期中】设有限集合
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13．【2017福建闽侯三中高三期中】定义：若平面点集
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其中不是开集的是      . （请写出所有符合条件的序号）
14.【2016湖南省益阳四月调研】已知
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（2）设集合
[image: image195.wmf](

)

(

)

{

}

|

APkPkk

=

为

的

“

衍

生

质

数

”

,
[image: image196.wmf](

)

{

}

|

BkPkk

=

为

的

“

衍

生

质

数

”

,则集合
[image: image197.wmf]AB

U

中元素的个数是       ．
15.设全集
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16．在整数集
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确结论的个数是（   ）
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17．由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有[image: image228.png]i 22 2R (ZXXK.COM)




理数的“分割”来定义无理数（史称戴德金分割）,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集
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18．【2016届福建漳州毕业班质量检查】已知集合[image: image246.wmf]{
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20．定义全集
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21．以（0, m）间的整数
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22．对于集合
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23. 【2016届江苏省淮安市高三5月信息卷】已知非空集合
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